Reactions of Tin(IV) Chloride with Organosilyl Compounds

NARAYAN S. HOSMANE*

Department of Chemistry, Southern Methodist University, Dallas, Tex. 75275, U.S.A.

STEPHEN CRADOCK and E. A. V. EBSWORTH

Department of Chemistry, Edinburgh University, West Mains Road, Edinburgh, EH9 3JJ, U.K.

Received December 2, 1982

The reaction between $SnCl_4$ and $R_{3-n}SiH_{n+1}$ (n = 0-2) have been investigated [$R = CH_3$, CH= CH_2 , $CH_2-CH=CH_2$, C=CH, $C=CCF_3$, C_5H_5 , C_6H_5 , or $Si(CH_3)_3$]; the reaction with silacyclopent-3-ene was also investigated. All the reactions led to monochlorination at silicon without breaking the Si-C and/or Si-Si bonds except in some allylsilanes, and spectroscopic parameters for the new compounds $CH_2-CH=CH-CH_2SiHCl$, $CH=CSiH_2Cl$, $CF_3C=CSiH_2Cl$, $(CH_3)_3SiSiH_2Cl$, and $(CH_3)_3SiSi+$ HCl_2 , all prepared by this route, are reported. For the disilanes, ²⁹Si and ¹³C chemical shifts were measured by heteronuclear double resonance.

Introduction

We have already described [1] a study of the influences of tin(IV) chloride as a chlorinating agent for inorganic compounds containing the SiH₃ group. In this paper we describe the reaction between the same reagent and a variety of organosilanes containing SiH- and Si-Si bonds with a view to establishing the range of organosilanes that can be chlorinated by tin(IV) chloride without breaking Si-Si and Si-C bonds.

Experimental

Compounds were handled in standard vacuumsystems fitted with greased taps or teflon valves; all the reactions were carried out in pyrex-glass ampoules of 30 ml capacity fitted with teflon valves, involatile substances were manipulated in evacuable glovebags or boxes under an atmosphere of dry N_2 . Spectra were obtained by means of the following instruments: infrared, Perkin-Elmer 225 (500-200 cm⁻¹) or 457; Raman, Cary 83 (a γ ion laser source, 488 nm); Mass, AEI MS 902; NMR HA 100 (100 MHz for ¹H) whose probe has been double-tuned to accept a second radio-frequency [2]. Elemental analyses were obtained from Galbraith Laboratories, Knoxville, TN. All the known compounds among the products were identified by comparing their infrared and ¹H NMR spectra with those of the authentic samples.

Reaction of the Tin(IV) Chloride

With Methylsilane

Methylsilane (1.02 mmol) was allowed to warm to room temperature with $SnCl_4$ (1.43 mmol) A thin white film began to form almost immediately; the reaction appeared complete after 4 hr. The volatile products consisted of HCl (1.03 mmol), CH₃SiH₂Cl (0.87 mmol) and CH₃SiHCl₂ (0.15 mmol); a white involatile residue of SnCl₂ (1.05 mmol) remained.

With Dimethylsilane

Dimethylsilane (1.00 mmol) was allowed to warm to room temperature with $SnCl_4$ (1.16 mmol). A white solid began to form almost at once and the reaction appeared complete after 20 minutes. The volatile products consisted of HCl (1.00 mmol) and (CH₃)₂SiHCl (1.00 mmol); a white involatile residue of SnCl₂ (1.00 mmol) remained.

With Trimethylsilane

Trimethylsilane (1.00 mmol) was allowed to warm to room temperature with $SnCl_4$ (1.40 mmol). A thin white film of solid began to form almost at once; the reaction appeared complete after 3 hr. The volatile products consisted of HCl (1.00 mmol) and Me₃SiCl (1.00 mmol); SnCl₄ (0.31 mmol) was

^{*}Author to whom correspondence should be addressed.

Liquid ^a		Vapor ^a	
Raman frequency (cm ⁻¹)	Raman polarization ratio	Infrared frequency (cm ⁻¹)	Possible assignments
3310 vvw	p?	3313.8 s	vCH
		2247.3 w	?
2220 vvs	р	2219.1 vs	vSiH (asym)
		2215 s	vSiH (sym)
		2204.4 s	?
2060 vs	р	2061.8 s	vC≡C
		1362 m	2×692 (overtone)
950 ± 1 s, broad	dp?	955 s	δSiH ₂
		934 ± 1 m	?
870 w, broad	dp?	874.6 vs	δSiH ₂
		815 vw	δSiH ₂
810 vvw, broad	dp?		
735 m, broad	dp?	729.8 vw	C_2H_2 impurity
710 w, broad	dp?	692 s	ρSiH ₂
670 ± 2 w	p?	663 w	νSiC
620 ± 5 vw, broad	dp?	628? m	δCCH (asym)
		615 m	δCCH (sym)
535 vvs	р	548 m	νSiCl
325 w, broad	p?	322 w	SiCC bend (asym)
222 s	dp?		SiCC bend (sym)
132 vs	dp?		ClSiC bend

TABLE I. Raman and Infrared Spectra of CISiH₂ C=CH.

^aWhere s = strong, m = medium, w = weak, v = very, p = polarised and dp = depolarised.

recovered, and a residue of $SnCl_2$ (1.00 mmol) remained.

With Methylchlorosilane

Methylchlorosilane (0.37 mmol) was allowed to warm to room temperature with $SnCl_4$ (0.39 mmol). A white solid began to form slowly. After 3 days, the products were found to consist of HCl (0.21 mmol) and CH₃SiHCl₂ (0.23 mmol); CH₃SiH₂Cl (0.13 mmol) and SnCl₄ (0.15 mmol) were recovered, and a residue of SnCl₂ remained. In a separate experiment, CH₃SiH₂Cl (0.80 mmol) was allowed to stand over SnCl₂ (2.0 mmol); all the CH₃SiH₂Cl (0.80 mmol) was recovered unchanged.

With Vinylsilane

Vinylsilane (1.00 mmol) and $SnCl_4$ (1.50 mmol) were allowed to warm to room temperature; white solid began to form at once and the reaction appeared complete after 18 hours. The volatile products consisted of HCl (1.11 mmol), SiH₃Cl (0.11 mmol), vinylchlorosilane (0.67 mmol), and vinyldichlorosilane (0.21 mmol); unreacted $SnCl_4$ (0.25 mmol) was recovered. In a second experiment, vinylsilane (2.00 mmol) and SnCl₄ (1.50 mmol) gave HCl (1.50 mmol), ClSiH₂CHCH₂ (1.50 mmol) and vinylsilane (0.50 mmol).

With Allylsilane

Allylsilane (1.00 mmol) and SnCl₄ (1.2 mmol) were allowed to warm together to room temperature. A white solid began to form at once; the reaction appeared complete after 2 hours. The volatile products consisted of HCl (0.12 mmol), SiH₃Cl (0.60 mmol), SiH₂Cl₂ (0.40 mmol) and ClCH₂-CHCH₂ (0.80 mmol); a white involatile residue of SnCl₂ remained.

With Phenylsilane

Phenylsilane (1.00 mmol) and SnCl₄ (1.50 mmol) were allowed to warm together to room temperature. A thin white film began to form almost at once; the reaction appeared complete after 15 minutes. The volatile products were found to consist of HCl (0.92 mmol), SiH₃Cl (0.04 mmol), SiH₂Cl₂ (0.02 mmol) and PhSiH₂Cl (0.91) mmol; SnCl₄ contaminated with a little benzene (0.5 mmol in all) was also recovered, and a residue of involatile SnCl₂ remained.

Liquid ^a		Vapor ^a	
Raman frequency (cm ⁻¹)	Raman polarization ratio	Infrared frequency (cm ⁻¹)	Possible assignments
2238 vs	р	2226 s	vSiH (asym)
		2221.5 s	νSiH (sym) + νC≡C
1265 vvw, br	dp	1252.6 vs	
1225 vvw	dp	1223 s	νC-F
1172 vw, br	dp	1180 vvs	
948 s	dp	947 s	δSiH ₂
880 s	р	-	?
865 m	dp	868 vs	δ SiH ₂
742 m	р	760 vvw	δSiH ₂
731 m	dp	726 vvw	ρSiH ₂
702 w	р	698 vvw	νSiC
620 m	dp	610 m	δCF ₃
558 vs	р	564 s	vSiCl
462 m	dp	467 vvw	δCF ₃
378 m	dp?	372 m	δCF3
305 vs	р	302 vvw	CCC bend?
243 ± 1 vvs	dp	_	SiCC bend?
151 vvs	dp?	_	ClSiC bend?

^aWhere s = strong, m = medium, w = weak, br = broad, v = very, p = polarised, and dp = depolarised.

With Cyclopentadienylsilane

Cyclopentadienylsilane (0.50 mmol) was allowed to warm with $SnCl_4$ (0.70 mmol) to room temperature. A grey-white solid formed immediately, and this reaction was complete in 3 minutes. The volatile products were found to consist of HCl (0.07 mmol), SiH_3Cl (0.43 mmol) and SiH_2Cl_2 (0.07 mmol). Attempts to record the infrared spectrum of the solid residue were unsuccessful.

With Silacyclopent-3-ene

Silacyclopent-3-ene (1.00 mmol) and SnCl₄ (1.03 mmol) were allowed to warm together to room temperature. A white solid began to form at once and reaction appeared complete after 30 minutes. The volatile products were found to consist of HCl (volatile at -78 °C) and 1-chlorosilacyclopent-3-ene [collected in a trap at -78 °C, 1.00 mmol. Exact mass M.W. for ³⁵Cl²⁸SiC₄H₇, ³⁷Cl²⁸SiC₄H₇, Calc. 118.000555, 119.997605; Found: 118.000813, 119.997921. ¹H NMR spectrum, SiH triplet (J = 2.8 Hz) at ⁵4.67 ppm, multiplets ⁵1.9 and ⁵4.8–6 ppm. Raman peaks at 3054m, 2918sp, 2195vs, 1612m, 1405m, 1285sh, 1211mp, 918s, 763m, 718vs, 640s, 530wsp, 235m, 197s. IR peaks at 2960sh, 2850sh, 2175s, 1108m, 857s, 755m, 643m, 528m. Anal. Calcd. for C₄H₇ClSi: C, 40.51; H, 5.91;

Cl, 29.95; Si. 23.63. Found: C, 40.54; H, 5.82; Cl, 29.89; Si, 23.66].

With Silylacetylene

Silylacetylene (1.00 mmol) was allowed to warm to room temperature with SnCl₄ (1.50 mmol). White solid began to form at once; the reaction apppeared complete after 18 hours. The volatile products consisted of HCl (volatile at -130 °C, 0.50 mmol), SiH₃Cl (volatile at -120 °C, 0.07 mmol), unreacted silylacetylene (volatile at -120 °C, 0.43 mmol), and chlorosilylacetylene [volatile at −78 °C but involatile at -120 °C, 0.50 mmol. M(Dumas), found 91.3; calc. 90.5. M(exact mass), ³⁵Cl²⁸SiC₂H₃, ³⁷Cl²⁸SiC₂H₃, found, 89.968993, 91.966740; calc. 89.969256, 91.966306. v.p. at 0 °C, 16.2 cm Hg; b.p. (extrap.) = 321 K. $\delta(SiH)$ = 4.79, $\delta(CH)$ = 2.48 ppm. (Me₄Si solvent and internal standard); ${}^{4}J(HH) = 1.0$ Hz. Vibrational spectra and assignments are summarized in Table I. Anal. calcd for C₂H₃ClSi: C, 26.52; H, 3.31; Cl, 39.23; Si, 30.94. Found: C, 26.43; H, 3.42; Cl, 39.19; Si, 31.02].

With 1-Silyl-3,3,3-trifluoropropyne

1-silyl-3,3,3-trifluoropropyne (1.0 mmol) was allowed to warm to room temperature with $SnCl_4$ (0.95 mmol); white solid began to form at once and

Liquid ^a		Vapor ^a	
Raman frequency (cm ⁻¹)	Raman polarization ratio	Infrared frequency (cm ⁻¹)	Possible assignments
2970 s	dp	2958 ± 1 m	
2910 s	р	2900 w	νCH
		2869 vvw	
2140 ± 2 vs	р	2138 ± 1 s	νSiH
1410 w,br	dp	1410 w,br	$\mathcal{E}(\mathbf{H}_{\mathbf{v}})$
		$1325 \pm 1 \text{ vvw}$	δCH ₃ (asym)
1265 w	p?	1262 m	δCH ₃ (sym)
1252 w	dp		
940 m,br	dp	945 ± 2 w,br	δSiH2
870sh		Ì	CH
845 vw,br	dp	845 s,br∫	ρCH ₃
805 ± 2 vw	p?	$802 \pm 2 \text{ vs}$	δSiH ₂
755 vw	dp	743 w	ρ SiH ₂ ?
702 s	dp	698 w	νSiC
630 vs	р	620 w	νSiC
525 ± 2 m,br	dp?	530 ± 1 m	νSiCl
478 m	р	490 vvw	?
418 vvs	р	405 vvw	<i>ν</i> Si−Si
223 vs	dp	l	50 E
180 s	p?	5	δC3Si
150s	dp?		ClSiSi bend?

TABLE III. Raman and Infrared Spectra of Me₃SiSiH₂Cl.

^aWhere s = strong, m = medium, w = weak, sh = shoulder, br = broad, p = polarised and dp = depolarised.

the reaction appeared complete after 18 hours. The volatile products consisted of HCl (collected in a -196 °C trap, 0.95 mmol), unreacted SiH₃CCCF₃ (collected in a -120 °C trap, 0.05 mmol), and 1-chlorosilyl-3,3,3-trifluoropropyne [volatile at -78 °C but involatile at -96 °C, 0.95 mmol. M(Dumas), found, 158; required 158.5. M(exact mass mass spectrum), 157.956151, 159.953273. C₃H₂ClF₃Si requires 157.956638 (³⁵Cl), 159.953688 (³⁷Cl). ^{δ}(Me₄Si solvent and standard), 4.88; ^{δ}F, -53.42 (low frequency of CCl₃F solvent and standard) ¹J(²⁹SiH) = 265, ⁵J(HF) = 1.3 Hz. Vibrational frequencies and assignments are summarised in Table II. *Anal.* Calcd for C₃H₂ClF₃Si: C, 22.71; H, 1.26; Cl, 22.40; F, 35.96; Si, 17.67. Found: C, 22.80; H, 1.30; Cl, 22.38; F, 35.89; Si, 17.70].

With 1,1,1-Trimethyldisilane

1,1,1-trimethyldisilane (1.0 mmol) and $SnCl_4$ (0.96 mmol, 0.258 g) were condensed in a 20-ml reaction ampoule and allowed to warm to room

temperature. A thin white film on the inner walls of the reaction ampoule began to form almost immediately, and the reaction was complete in 5 minutes. Trap-to-trap distillation of the volatile products gave HCl (0.96 mmol) volatile at -120 °C, unreacted Me₃SiSiH₃ (0.04 mmol) volatile at -78 °C, and Me₃SiSiH₂Cl [0.96 mmol, collected in a -78 °C trap. M(Dumas), found 139; required 138.5. M (exact mass), 138.008335, 140.006094. $C_{3}H_{11}$ ClSi₂ requires 138.008782 (³⁵Cl), 140.005832 (³⁷Cl). ¹H NMR spectrum (C₆H₆ solvent and standard, $SiH [^{1}J(H^{29}Si) = 204 Hz; ^{2}J(HSi^{29}Si) = 11 Hz]$ singlet at ^{δ}4.66 ppm, *HCSi* singlet at δ 0.02 ppm; ¹J(H¹³C) = 120 Hz, ${}^{2}J(HC^{29}Si) = 6.6$ Hz, ${}^{3}J(HCSi^{29}Si) = 3.8$ Hz. δ^{29} Si (relative to Me₄Si; negative to low frequency $Me_3^{28}Si^{29}SiH_2Cl = -30.75$ ppm, Me_3^{29} - $Si^{28}SiH_2Cl = -15.7 \text{ ppm.} \delta^{13}C = -5.52 \text{ ppm.} \text{ Vibra-}$ tional frequencies and assignments are summarized in Table III. Anal. calcd. for C₃H₁₁ClSi2: C, 26.0; H, 7.9; Cl, 25.6; Si, 40.4. Found: C, 26.1; H, 7.8; Cl, 25.5; Si, 40.5.]

Liquid ^a		Vapour ^a	
Raman frequency (cm ⁻¹)	Raman polarization ratio	Infrared frequency (cm ⁻¹)	Possible assignments
2965 m	dp	2968 ± 2 w)	
2902 s	р	$2910 \pm 2 \text{ vw} $	νCH
2170 vs	р	2171 ± 2 m	νSiH
1415 ± 5 vw,br	dp	1405 vvw	δCH ₃ (asym)
1250 ± 5 vw,br	dp	1258 m	δCH ₃ (sym)
1055 vvw	dp?		?
915 vvw,br	dp?		
850 ± 5 vw,br	dp?	865 sh 845 m	δSiH
775 w	dp	778 s	ρCH3
738 m	dp	734 m	ρSiH
702 w	dp	704 sh	νSiC
625 vs	р	622 vw	νSiC
542 sh	dp?	558 s	vSiCl (asym)
525 m	p?	532 m	vSiCl(sym)
392 vvs	P	395 vvw	νSi−Si
258 m	dp?	-)	?
215 s	dp?	- }	δC3Si
178 m	dp?	_)	
152 s	dp?		ClSiSi bend
095? vw	p?	_	ClSiCl bend?

^aWhere s = strong, m = medium, w = weak, sh = shoulder, br = broad, v = very, p = polarised and dp = depolarised.

With 1,1,1-Trimethyl-2-chlorodisilane

Me₃SiSiH₂Cl (1.0 mmol) was allowed to warm to room temperature with $SnCl_4$ (1.03 mmol, 0.27 g); white solid began to form slowly and the reaction appeared complete after 24 hours. The volatile products consisted of HCl (collected in a trap at -196 °C, 1.0 mmol), and Me₃SiSiHCl₂ [volatile at -45 °C but involatile at -78 °C, 1.0 mmol. M(Dumas), found, 173; required 173. M(exact mass), 171.969783, 173.966723, 175.964341. C₃H₁₀Cl₂Si₂ requires 171.969810 (³⁵Cl, ³⁵Cl), 173.966854 (³⁵Cl, ³⁷Cl), 175.963910 (³⁷Cl, ³⁷Cl). ¹H NMR spectrum (C₆H₆ solvent and standard), SiH $[^{1}J(H^{29}Si) = 235$ Hz; ${}^{2}J(HSi^{29}Si) = 18.8$ Hz] singlet at ${}^{\delta}5.58$ ppm, $HCSi [^{2}J(HC^{29}Si = 7.0 \text{ Hz}; ^{2}J(HCSi^{29}Si) = 5.0 \text{ Hz};$ ${}^{1}J(H^{13}C) = 121 \text{ Hz}$] singlet at δ -0.01 ppm. ${}^{\delta 29}Si$ (relative to Me₄Si; negative to low frequency) Me₃²⁸- $Si^{29}SiHCl_2 = +12.08 \text{ ppm}, Me_3^{29}Si^{28}SiHCl_2 = -6.54.$ $\delta^{13}C = -3.78$ ppm. Vibrational frequencies and assignments are summarized in Table IV. Anal. calcd for C₃H₁₀Cl₂Si₂: C, 20.8; H, 5.78; Cl, 41.0; Si, 32.4. Found: C, 20.8; H, 5.75; Cl, 40.9; Si, 32.5].

Discussion

Our results suggest that tin(IV) chloride is a convenient reagent for chlorinating SiH-groups in organosilanes other than some allylsilanes; cyclopentadienylsilane can be regarded as an allylsilane. As with inorganic molecules containing SiH₃-groups, reaction to introduce a single chlorosubstituent at a silicon atom is much faster than to introduce a second. We made no quantitative studies of rates of reaction; however, it is clear that reaction between SnCl₄ and Me_{3-n}SiH_{n+1} (n = 0-2) is fastest when n = 1. It seems likely that the rate of reaction depends on a combination of steric and electronic factors. This would explain why the rate increases with increasing methyl substitution at silicon until steric factors become important. This is consistent with a mechanism involving electrophilic attack at silicon. The observation that the Sn(II) chloride produced forms an adherent film on the ampoule wall suggests that reaction occurs predominantly in a liquid film of Sn(IV) chloride. The product $SnCl_2$ + HCl might be formed by decomposition of an initial product $HSnCl_3$, but we have obtained no evidence for the formation of this species.

The cleavage of the Si-C bonds in allylsilane and cyclopentadienylsilane may involve initial formation of organotin(IV) derivatives:

 $RSiH_3 + SnCl_4 \rightarrow [RSnCl_3] + SiH_3Cl$

We were unable to identify such a derivative in either case. The isolation of allyl chloride in 80% yield from reaction of allylsilane and tin(IV) chloride would then imply the ready decomposition.

 $[RSnCl_3] \rightarrow RCl + SnCl_2.$

The reaction with silylcyclopentadiene yielded no chlorocyclopentadiene; the possibility of polymerization complicates the problem in this case. It is interesting that significant quantities of SiH_2Cl_2 were found in the reactions of allylsilane and cyclopentadienylsilane. These could not have been formed indirectly by reaction of initially-formed SiH_3Cl with unreacted $SnCl_4$, as this reaction is very slow. It may be that the postulated intermediate $[RSnCl_3]$ is a better chlorinating agent than $SnCl_4$. We intend to investigate this point using alkyl substituted tin(IV) chloride.

References

- S. Cradock, E. A. V. Ebsworth and N. S. Hosmane, J. Chem. Soc. Dalton Trans., 16/17, 1624 (1975).
- 2 D. E. J. Arnold, J. S. Dryburgh, E. A. V. Ebsworth and D. W. H. Rankin, J. Chem. Soc., Dalton Trans., 2518 (1972).